SAT Math: Comprehensive Formula Sheet


Looking for SAT Math resources? Tutopiya has some formula sheets that you can use!

Numbers, Sequences, Factors

Integers . . . , -3, -2, -1, 0, 1, 2, 3, . . .
Rationals: fractions, that is, anything expressible as a ratio of integers
Reals: integers plus rationals plus special numbers such as √2, √3 and π
Order Of Operations: PEMDAS

(Parentheses / Exponents / Multiply / Divide / Add / Subtract)

Arithmetic Sequences: each term is equal to the previous term plus d

Sequence: t1, t1 + d, t1 + 2d, . . .

Example: d = 4 and t1 = 3 gives the sequence 3, 7, 11, 15, . . .

Geometric Sequences: each term is equal to the previous term times r

Sequence: t1, t1 · r, t1 · r², . . .

Example: r = 2 and t1 = 3 gives the sequence 3, 6, 12, 24, . . .

Factors: the factors of a number divide into that number without a remainder

Example: the factors of 52 are 1, 2, 4, 13, 26, and 52

Multiples: the multiples of a number are divisible by that number without a remainder

Example: the positive multiples of 20 are 20, 40, 60, 80, . . .

Percents: use the following formula to find part, whole, or percent

part =percent/100 × whole

Example: 75% of 300 is what?

Solve x = (75/100) × 300 to get 225

Example: 45 is what percent of 60?

Solve 45 = (x/100) × 60 to get 75%

Example: 30 is 20% of what?

Solve 30 = (20/100) × x to get 150

Averages, Counting, Statistics, Probability



Sum = average x (number of terms)

Mode = value in the list that appears most often

Median = middle value in the list (which must be sorted)


Example: median of {3,10,9,27,50} = 10

Example: median of {3,9,10,27} = (9+10)/2 = 9.5

Fundamental Counting Principle:

If an event can happen in N ways, and another, independent event can happen in M ways, then both events together can happen in N x M ways.





Example: each SAT math multiple choice question has five possible answers, one of which is the correct answer. If you guess the answer to a question completely at random, your probability of getting it right is ⅕ = 20

The probability of two different events A and B both happening is P(A and B) = P(A) · P(B), as long as the events are independent (not mutually exclusive).


Powers, Exponents, Roots


Factoring, Solving



To solve a quadratic such as x² + bx + c = 0, first factor the left side to get (x+a₁)(x+a₂) = 0, then set each part in parentheses equal to zero. E.g., x² + 4x + 3 = (x + 3)(x + 1) = 0

so that x = −3 or x = −1.

To solve two linear equations in x and y: use the first equation to substitute for a variable in the second. E.g., suppose x + y = 3 and 4x − y = 2. The first equation gives y = 3 − x, so the second equation becomes 4x − (3 − x) = 2 ⇒ 5x − 3 = 2 ⇒ x = 1, y = 2.




Lines (Linear Functions)


Slope-intercept form: given the slope m and the y-intercept b, then the equation of the line is y = mx + b. Parallel lines have equal slopes: m1 = m2. Perpendicular lines have negative reciprocal slopes: m₁ · m₂ = −1.


Intersecting lines: opposite angles are equal. Also, each pair of angles along the same line

add to 180◦. In the figure above, a + b = 180◦.


Parallel lines: eight angles are formed when a line crosses two parallel lines. The four big angles (a) are equal, and the four small angles (b) are equal.



Right triangles:



Note that the above special triangle figures are given in the test booklet, so you don’t have

to memorize them, but you should be familiar with what they mean, especially the first

one, which is called the Pythagorean Theorem (a² + b² = c²).


A good example of a right triangle is one with a = 3, b = 4, and c = 5, also called a 3–4–5

right triangle. Note that multiples of these numbers are also right triangles. For example,

if you multiply these numbers by 2, you get a = 6, b = 8, and c = 10 (6–8–10), which is

also a right triangle.


The “Special Right Triangles” are needed less often than the Pythagorean Theorem. Here,

“x” is used to mean any positive number, such as 1, 1/2, etc. A typical example on the

test: you are given a triangle with sides 2, 1, and √3 and are asked for the angle opposite the √3. The figure shows that this angle is 60◦


All triangles:



The area formula above works for all triangles, not just right triangles.


Angles on the inside of any triangle add up to 180◦.


The length of one side of any triangle is always less than the sum of the lengths of the

other two sides.


Other important triangles:



These triangles have three equal sides, and all three angles are 60◦.



An isosceles triangle has two equal sides. The “base” angles (the ones opposite the two sides) are equal. A good example of an isosceles triangle is the one on page 4 with base angles of 45◦.



Two or more triangles are similar if they have the same shape. The corresponding angles are equal, and the corresponding sides are in proportion. For example, the 3–4–5 triangle and the 6–8–10 triangle from before are similar since their sides are in a ratio of 2 to 1.





Rectangles and Friends



The formula for the area of a rectangle is given in the test booklet, but it is very important to know, so you should memorize it anyway.





Note that the above solids figures are given in the test booklet, so you don’t have to memorize them, but you should be familiar with what they mean.

About Tutopiya

Love these comprehensive Maths formulas? Read about 5 Crucial Grammar Rules for SAT Writing here. Tutopiya has highly qualified and trained tutors that are familiar with the SAT Math curriculum as well as the syllabus. Should you find yourself struggling with SAT Math, know that you can always reach out for help!

More about us

Tutopiya is a live online tutoring platform that offers 1-1 online lessons for students aged 8 to 18 years old. We offer a FREE 60 minutes trial lessons for new sign-ups, try Tutopiya and sign up now!

About The Author

About Us
Reach Us

All rights reserved

©2022 tutopiya