## MATHEMATICAL NOTATION

The list which follows summarises the notation used in Cambridge's Mathematics examinations. Although primarily directed towards A-Level, the list also applies, where relevant, to examinations at all other levels.

1. Set Notation

| $\epsilon$ | is an element of |
| :---: | :---: |
| $\notin$ | is not an element of |
| $\left\{x_{1}, x_{2}, \ldots\right\}$ | the set with elements $x_{1}, x_{2}, \ldots$ |
| $\{x: \ldots\}$ | the set of all $x$ such that |
| $\mathrm{n}(A)$ | the number of elements in set $A$ |
| $\varnothing$ | the empty set |
| $\mathscr{6}$ | universal set |
| $A^{\prime}$ | the complement of the set $A$ |
| $\mathbb{Z}$ | the set of integers, $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$ |
| $\mathbb{Z}^{+}$ | the set of positive integers, $\{1,2,3, \ldots\}$ |
| Q | the set of rational numbers |
| $\mathbb{Q}^{+}$ | the set of positive rational numbers, $\{x \in \mathbb{Q}: x>0\}$ |
| $\mathbb{Q}_{0}^{+}$ | the set of positive rational numbers and zero, $\{x \in \mathbb{Q}: x \geqslant 0\}$ |
| $\mathbb{R}$ | the set of real numbers |
| $\mathbb{R}^{+}$ | the set of positive real numbers, $\{x \in \mathbb{R}: x>0\}$ |
| $\mathbb{R}_{0}^{+}$ | the set of positive real numbers and zero, $\{x \in \mathbb{R}: x \geqslant 0\}$ |
| $\mathbb{R}^{n}$ | the real $n$ tuples |
| $\mathbb{C}$ | the set of complex numbers |
| $\subseteq$ | is a subset of |
| $\subset$ | is a proper subset of |
| $\nsubseteq$ | is not a subset of |
| $\not \subset$ | is not a proper subset of |
| $\cup$ | union |
| $\cap$ | intersection |
| [ $a, b$ ] | the closed interval $\{x \in \mathbb{R}: a \leqslant x \leqslant b\}$ |
| $[a, b)$ | the interval $\{x \in \mathbb{R}: a \leqslant x<b\}$ |
| ( $a, b$ ] | the interval $\{x \in \mathbb{R}: a<x \leqslant b\}$ |
| $(a, b)$ | the open interval $\{x \in \mathbb{R}: a<x<b\}$ |

```
2. Miscellaneous Symbols
= is equal to
# is not equal to
\equiv is identical to or is congruent to
\approx is approximately equal to
\propto \quad \text { is proportional to}
< is less than
\leqslant;
> is greater than
\geqslant;*
\infty
infinity
```


## 3. Operations

$a+b$
$a$ plus $b$
$a-b \quad a$ minus $b$
$a \times b, a b, a . b \quad a$ multiplied by $b$
$a \div b, \frac{a}{b}, a / b \quad a$ divided by $b$
$a: b \quad$ the ratio of $a$ to $b$
$\sum_{i=1}^{n} a_{i} \quad a_{1}+a_{2}+\ldots+a_{n}$
$\sqrt{a} \quad$ the positive square root of the real number $a$
$|a| \quad$ the modulus of the real number $a$
$n!\quad n$ factorial for $n \in \mathbb{Z}^{+} \cup\{0\},(0!=1)$
$\binom{n}{r} \quad$ the binomial coefficient $\frac{n!}{r!(n-r)!}$, for $n, r \in \mathbb{Z}^{+} \cup\{0\}, 0 \leqslant r \leqslant n$

$$
\frac{n(n-1) \ldots(n-r+1)}{r!}, \text { for } n \in \mathbb{Q}, r \in \mathbb{Z}^{+} \mathrm{U}\{0\}
$$

## 4. Functions

f
$\mathrm{f}(x)$
f: $A \rightarrow B$
f: $x \mapsto y$
$\mathrm{f}^{-1}$
$g_{\circ} f, g f$
$\lim \mathrm{f}(x)$
$\Delta x ; \delta x$
dy
$\mathrm{d} x$
$\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}} \quad$ the $n$th derivative of $y$ with respect to $x$
$\mathrm{f}^{\prime}(x), \mathrm{f}^{\prime}(x), \ldots, \mathrm{f}^{(n)}(x)$
$\int y \mathrm{~d} x$
$\int_{a}^{b} y \mathrm{~d} x$
$\dot{x}, \ddot{x}, \ldots$
function f
the value of the function f at $x$
the function f maps the element $x$ to the element $y$
the inverse of the function $f$
the composite function of f and g which is defined by $(\mathrm{g} \circ \mathrm{f})(x)$ or $\mathrm{gf}(x)=\mathrm{g}(\mathrm{f}(x))$
the limit of $\mathrm{f}(x)$ as $x$ tends to $a$
an increment of $x$
the derivative of $y$ with respect to $x$
the first, second, $\ldots n$th derivatives of $\mathrm{f}(x)$ with respect to $x$
indefinite integral of $y$ with respect to $x$
the first, second, ...derivatives of $x$ with respect to time
f is a function under which each element of set $A$ has an image in set $B$
the definite integral of $y$ with respect to $x$ for values of $x$ between $a$ and $b$
5. Exponential and Logarithmic Functions
e base of natural logarithms
$\mathrm{e}^{x}, \exp x \quad$ exponential function of $x$
$\log _{a} x \quad$ logarithm to the base $a$ of $x$
$\ln x \quad$ natural logarithm of $x$
$\lg x \quad$ logarithm of $x$ to base 10

## 6. Circular Functions and Relations

$\sin , \cos , \tan$, cosec, sec, cot
$\sin ^{-1}, \cos ^{-1}, \tan ^{-1}$
$\operatorname{cosec}^{-1}, \sec ^{-1}, \cot ^{-1}$
$\}$ the circular functions
\} the inverse circular functions

## 7. Complex Numbers

8. Matrices
9. Vectors
a
$\overrightarrow{A B}$
â
$\mathbf{i}, \mathbf{j}, \mathrm{k}$
|a|
$\overrightarrow{A B} \mid$
a.b
$\mathbf{a} \times \mathbf{b}$
```
i
z
    a complex number, \(z=x+\mathrm{i} y\)
    \(=r(\cos \theta+\mathrm{i} \sin \theta), r \in \mathbb{R}_{0}^{+}\)
    \(=r \mathrm{e}^{\mathrm{i} \theta}, r \in \mathbb{R}_{0}^{+}\)
\(\operatorname{Re} z \quad\) the real part of \(z, \operatorname{Re}(x+\mathrm{i} y)=x\)
\(\operatorname{Im} z \quad\) the imaginary part of \(z, \operatorname{Im}(x+\mathrm{i} y)=y\)
\(|z|\)
\(\arg z\)
\(z^{*}\)
    the modulus of \(z,|x+\mathrm{i} y|=\sqrt{x^{2}+y^{2}},|r(\cos \theta+\mathrm{i} \sin \theta)|=r\)
    the argument of \(z, \arg (r(\cos \theta+\mathrm{i} \sin \theta))=\theta,-\pi<\theta \leqslant \pi\)
    the complex conjugate of \(z,(x+\mathrm{i} y)^{*}=x-\mathrm{i} y\)
square root of -1
a complex number, \(z=x+\mathrm{i} y\)
\[
\begin{aligned}
& =r(\cos \theta+\mathrm{i} \sin \theta), r \in \mathbb{R}_{0}^{+} \\
& =r \mathrm{e}^{\mathrm{i} \theta}, r \in \mathbb{R}_{0}^{+}
\end{aligned}
\]
the real part of \(z, \operatorname{Re}(x+\mathrm{i} y)=x\)
the imaginary part of \(z, \operatorname{Im}(x+\mathrm{i} y)=y\)
the modulus of \(z,|x+\mathrm{i} y|=\sqrt{x^{2}+y^{2}},|r(\cos \theta+\mathrm{i} \sin \theta)|=r\)
the argument of \(z, \arg (r(\cos \theta+\mathrm{i} \sin \theta))=\theta,-\pi<\theta \leqslant \pi\)
the complex conjugate of \(z,(x+\mathrm{i} y)^{*}=x-\mathrm{i} y\)
```

| $\mathbf{M}$ | a matrix $\mathbf{M}$ |
| :--- | :--- |
| $\mathbf{M}^{-1}$ | the inverse of the square matrix $\mathbf{M}$ |
| $\mathbf{M}^{\mathrm{T}}$ | the transpose of the matrix $\mathbf{M}$ |
| $\operatorname{det} \mathbf{M}$ | the determinant of the square matrix $\mathbf{M}$ |

the determinant of the square matrix $\mathbf{M}$

## the vector a

the vector represented in magnitude and direction by the directed line segment $A B$
a unit vector in the direction of the vector a
unit vectors in the directions of the cartesian coordinate axes
the magnitude of a
the magnitude of $\overrightarrow{A B}$
the scalar product of $\mathbf{a}$ and $\mathbf{b}$
the vector product of $\mathbf{a}$ and $\mathbf{b}$

| $A, B, C$, etc. | events |
| :---: | :---: |
| $A \cup B$ | union of events $A$ and $B$ |
| $A \cap B$ | intersection of the events $A$ and $B$ |
| $\mathrm{P}(A)$ | probability of the event $A$ |
| $A^{\prime}$ | complement of the event $A$, the event 'not $A$ ' |
| $\mathrm{P}(A \mid B)$ | probability of the event $A$ given the event $B$ |
| $X, Y, R$, etc. | random variables |
| $x, y, r$, etc. | value of the random variables $X, Y, R$, etc. |
| $x_{1}, x_{2}, \ldots$ | observations |
| $f_{1}, f_{2}, \ldots$ | frequencies with which the observations, $x_{1}, x_{2} \ldots$ occur |
| $\mathrm{p}(x)$ | the value of the probability function $\mathrm{P}(X=x)$ of the discrete random variable $X$ |
| $p_{1}, p_{2} \ldots$ | probabilities of the values $x_{1}, x_{2}, \ldots$ of the discrete random variable $X$ |
| $\mathrm{f}(x), \mathrm{g}(x) \ldots$ | the value of the probability density function of the continuous random variable $X$ |
| $\mathrm{F}(x), \mathrm{G}(x) \ldots$ | the value of the (cumulative) distribution function $\mathrm{P}(X \leqslant x)$ of the random variable $X$ |
| $\mathrm{E}(X)$ | expectation of the random variable $X$ |
| $\mathrm{E}[\mathrm{g}(X)]$ | expectation of $\mathrm{g}(X)$ |
| $\operatorname{Var}(X)$ | variance of the random variable $X$ |
| $\mathrm{B}(n, p)$ | binominal distribution, parameters $n$ and $p$ |
| $\operatorname{Po}(\mu)$ | Poisson distribution, mean $\mu$ |
| $\mathrm{N}\left(\mu, \sigma^{2}\right)$ | normal distribution, mean $\mu$ and variance $\sigma^{2}$ |
| $\mu$ | population mean |
| $\sigma^{2}$ | population variance |
| $\sigma$ | population standard deviation |
| $\bar{x}$ | sample mean |
| $s^{2}$ | unbiased estimate of population variance from a sample, |
|  | $s^{2}=\frac{1}{n-1} \sum(x-\bar{x})^{2}$ |
| $\phi$ | probability density function of the standardised normal variable with distribution $\mathrm{N}(0,1)$ |
| $\Phi$ | corresponding cumulative distribution function |
| $\rho$ | linear product-moment correlation coefficient for a population |
| $r$ | linear product-moment correlation coefficient for a sample |

